skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Murzin, Vadim"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Nutrient nitrogen (N) and phosphorus (P) recovery from wastewater is an important challenge for enhanced environmental sustainability. Herein we report the synthesis and properties of mesoporous MgO nanoparticles doped with copper (Cu), iron (Fe), and zinc (Zn) as an alternative low-solubility high-abundance magnesium (Mg) source for crystalline struvite precipitation from nutrient-laden wastewater. Undoped MgO was shown to have the fastest phosphate (PO 4 3− ) adsorption kinetics with a k 2 value of 0.9 g g −1 min −1 at room temperature. The corresponding rate constant decreased for Cu–MgO (0.175 g g −1 min −1 ), Zn–MgO (0.145 g g −1 min −1 ), and Fe–MgO (0.02 g g −1 min −1 ). Undoped MgO resulted in the highest PO 4 3− removal at 94%, while Cu–MgO, Fe–MgO, and Zn–MgO resulted in 90%, 66% and 66%, respectively, under equivalent reaction conditions. All dopants resulted in the production of struvite as the main product with the incorporation of the transition metals into the struvite crystal lattice. X-ray absorption spectroscopy (XAS) showed that the majority of the Cu, Fe, and Zn were primarily in the +2, +3, and +2 oxidation states, respectively. XAS also showed that the Cu atoms exist in elongated octahedral coordination, while Fe was shown to be in octahedral coordination. Zn was shown to be in a complex disordered environment with octahedral sites coexisting with the majority of the tetrahedral sites. Finally, X-ray photoelectron spectroscopy data suggest a two-fold struvite surface enrichment with dopant metals, with Cu exhibiting an interesting new local binding structure. The dopant concentrations utilized were consistent with those found in natural Mg minerals, suggesting that (a) utilizing natural mineral periclase as the Mg source for struvite production can result in struvite formation, albeit at the expense of the reaction kinetics and overall yields, while also (b) supplying essential micronutrients, such as Zn and Cu, necessary for balanced nutrient uptake. 
    more » « less
  2. null (Ed.)
    Simultaneous major nutrient nitrogen (N) and phosphorus (P) recovery from wastewater is key to achieving food–energy–water sustainable development. In this work, we elucidate the reaction kinetics, crystalline structure and chemical composition of the resulting solid precipitate obtained from simulated N and P containing wastewater solution using widely abundant low solubility magnesite (MgCO 3 ) particles in the presence of common transition metal ions, such as zinc (Zn 2+ ) or copper (Cu 2+ ). We show that up to 100 ppm Zn 2+ from the simulated wastewater can be incorporated into the struvite lattice as isolated distorted Zn 2+ while even at very low concentrations of ∼5 ppm Cu 2+ ions almost completely inhibit struvite crystal formation. The resulting solid precipitate distinctly affects soil microbial biomass carbon and soil dehydrogenase enzyme activity. These results show a cautionary case where abundant natural mineral MgCO 3 exhibits very different chemistry in Cu 2+ containing simulated wastewater and does not readily adsorb or retain NH 4 + and PO 4 3− ions, unlike less sustainable but more water-soluble magnesium sources, such as MgCl 2 , at the equivalent [Mg 2+ ] : [NH 4 + ] : [PO 4 3− ] molar ratio of 1.4 : 1 : 1. 
    more » « less